Visualization and Complexity Reduction of Neural Networks
نویسندگان
چکیده
The identification of the proper structure of nonlinear neural networks (NNs) is a difficult problem, since these black-box models are not interpretable. The aim of the paper is to propose a new approach that can be used for the analysis and the reduction of these models. It is shown that NNs with sigmoid transfer function can be transformed into fuzzy systems. Hence, with the use of this transformation NNs can be analyzed by human experts based on the extracted linguistic rules. Moreover, based on the similarity of the resulted membership functions the hidden neurons of the NNs can be mapped into a two dimensional space. The resulted map provides an easily interpretable figure about the redundancy of the neurons. Furthermore, the contribution of these neurons can be measured by orthogonal least squares technique that can be used for the ordering of the extracted fuzzy rules based on their importance. A practical example related to the dynamic modeling of a chemical process system is used to prove that synergistic combination of model transformation, visualization and reduction of NNs is an effective technique, that can be used for the structural and parametrical analysis
منابع مشابه
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کامل